ABSTRACT
This research work is aimed at the development of an observer-based dynamic output feedback controller for stabilization and tracking of nonlinear systems. The developed controller is designed after the immersion-invariance and internal model principle (IMP) frameworks and targets non-square systems such as rotational-translational actuator (RTAC), cart-driven inverted pendulum (CIP) and quadrotor unmanned aerial vehicle (UAV). However non-square multiple-input multiple-output (MIMO) systems such as the UAV represented the principal system of choice for their structural properties. Non-square MIMO systems are systems that have more inputs than outputs (over-actuated) or vice-versa (under-actuated) and reflect the structures of many real world systems. The developed immersion invariance error feedback control law(IIEFCL) is used to solve stabilization and robust tracking problems of non-square MIMO non-linear systems. The output feedback internal model based observer is developed and tested with the RTAC, CIP and UAV while the immersion invariance stabilizing controller is developed and tested on the RTAC system. The output feedback controller showed good stability response on the selected models while the immersion invariance method displayed a good transient phase stability and tracking results with the addition of a robust state feedback feature to the underlying controller. The obtained settling times for the output feedback stabilization results were 2.7s, 1.113s and 0.6435s respectively for the three systems. The immersion-invariance control law acting as a robustifier to another controller produced zero percent overshoot and tracking error. The results showed attainment of desired stability and tracking and also quick convergence, disturbance rejection and handling of transient oscillations such as finite time escape or transient instability phenomena, from which many nonlinear systems do not recover after they occur. The IIEFCL was developed for the Quadrotor UAV and the results obtained were compared with some other standard nonlinear controllers that have been used in QUAV control. The metric for comparison was the integral of the squared control input (ISCI) signal. Results obtained compared favourably with existing nonlinear control laws. The IIEFCL showed the most improvement of 92.92% improvement over the backstepping control law, it had a 72.92% improvement over the feedback linearization control law and the least improvement was with respect to the sliding mode control law where only 66.225% improvement was recorded. Simulations were made using Matlab/Simulink and embedded C++ tools.
Background of the Study:
Text messaging has revolutionized communication among Nigerian youth, leading to notable phonologi...
Background of the study:
Street hawking has emerged as a prevalent economic survival strategy among urban youth in Warri North. Amid high...
INTRODUCTION AND BACKGROUND TO THE STUDY
Around the world, practically every facet of human exist...
ABSTRACT
This study was carried out to examine the effect of card readers on election credibility in Nigeri...
Background of the Study
Regional branding involves the strategic promotion of a region’s unique att...
Abstract
Purpose: Study habits have been the most important pred...
Background of the Study
Agricultural sustainability depends not only on natural resour...
Background of the Study
In the contemporary business landscape, organizations increasingly recognize the importance of w...
Abstract
This study investigates the relationship between personnel management and local government administration on Ab...
Cardiovascular diseases (CVDs) are a leading cause of death...